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. 
AN ABSTRACT 

NONPARAMETRIC DETECTION USING EXTREME-VALUE THEORY 

by 

Laurence B. Milstein 

Advisors: ,Jack K. Wolf 

Donald L. Schilling 

Submitted in  partial  fulfillment of the requirements for the degree of 

Doctor of Philosophy (Electrical  Engine e ring), 

This  paper concerns itself with the detection of a binary signal in 

additive, but statistically unknown, noise. The signal will be either a 

constant signa1,or a slowly fading signal. The noise will be a rb i t ra ry  

except f o r  the one restr ic t ion that its probability density function exhibit 

some type of exponential behavior on its "tails. " 

The detector will be based upon Gumbells extreme-value theory (EVT), 

Extreme -value theory is a branch of mathematical statist ics which considers 

the asymptotic distributions of the maximum and minimum samples f rom 

se ts  of independent and identically distributed random variables. 

theory will be used to obtain estimates of the optimum threshold and the 

probability of e r r o r  of a binary detector. 

for  a l l  estimates.  

This 

Confidence intervals a r e  obtained 

A comparison is  made between the EVT detector and another non- 

paramet r ic  detector, one which is  based upon the rank test ,  

that in  cer ta in  situations, the EVT detector becomes identical to the 

Neyman-Pearson detector, and therefore will outperform the rank or any 

other nonparametric detector. 

It is shown 

ii 



When the signal fades, it is shown that the E V T  detector 

becomes adaptive and can t rack the fade. 

run for  a fading signal, and the results verify the theory. 

Computer simulations a r e  

Finally, while the above results a r e  obtained with the help of 

an initial learning period, a study is  made, for  the case of detecting a 

constant signal i n  additive noise, of the performance of the detector w h c n  

the learning period is  removed. It is shown that for low e r r o r  rates,  Lhe 

es t imates  will converge to  values close to  those obtained when the learning 

period is  present. 

again the resul ts  verify the theory. 

A computer simulation is run for this case, and 
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INTRODUCTION 

Nonparametric detection i s  that branch of communication theory 

which concermitself with detecting signals in statistically unknown noise. 

In this report, a low-pass binary signal is assumed, and in most cases,  

the sys tem under consideration is an on-off system. In this type of 

problem, the optimum threshold (that is, the threshold which results in  

minimum probability of e r r o r )  could be found by setting up the likelihood- 

ratio if the probability density of noise and the Probability density of 

signal-plus-noise were known. F o r  equal apr ior i  probabilities of trans - 
mission, the threshold would occur at the point of intersection of the two 

probability density functions. 

suboptimum detection schemes must  be used. 

When the density functions a r e  unknown, 

It will be the object of this report  to obtain a nonparametric de- 

tector which yields an e r r o r  ra te  comparable to that obtained using an 

optimum parametr ic  detector. 

is based upon extreme-value theory. 

The nonparametric detector employed 

Extreme -value theory is a branch of mathematical statist ics 

which deals with the asymptotic probability distributions of extreme 

samples  

random variables. 

scheme by using the knowledge of the behavior of the extremes to obtain 

knowledge of the behavior of the initial variate on its 

words, i f  we know the properties of the maximum of a set  of n inde- 

pendendent and identically distributed random variables, we will use 

this information to obtain the properties of the original random variable 

in  the vicinity of the maximum value. 

taken f r o m  se ts  of independent and identically distributed 

This theory is used in a nonparametric detection 

ta i ls" .  In other 

In Chapter 1, a brief review of extreme-value theory is given, 
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and the general method of using this theory to detect signals i n  unknown 

noise is presented. The only restriction that is placed on the noise and 

signal-plus -noise densities is that they exhibit some type of exponential 

behavior on their I t  tai ls".  

Chapter 2 considers specific examples of detecting a constant 

signal i n  unknown noise. 

nonparametric detector, namely the rank detector. It is shown that the 

extreme-value theory (EVT) detector can, in  cer ta in  situations, perform 

a s  well a s  the optimum Neyman-Pearson detector. 

In addition, a comparison is  made with another 

In Chapter 3, a fading signal is considered. Two different 

schemes a r e  presented. 

a constant threshold, and the second forms the basis for  an adaptive r e -  

ceiver. In the latter case, computer simulations a r e  run, and the 

resul ts  a r e  seen to verify the theory. 

The first is  appropriate when the detector uses  

The procedure presented in the f i r s t  three chapters requires that 

the receiver  employ an initial learning period, during which the detector 

samples the noise and the signal-plus-noise separately. Chapter 4 con- 

s iders  a scheme using decision-directed measurements, in  which the learning 

period is eliminated. Again, computer simulations a r e  run and can be 

seen  to substantiate the resul ts  predicted by the theory. 
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CHAPTER 1 - BASIC THEORY 

1. 1 Extreme-Value Theory 

Extreme-value theory (EVT)  is the theory of the probability dis-  

tributions of the extremes of se t s  of independent and identically distributed 

random variables. That is, given n independent random variables 

xl . .  . x 

distribution of the largest  (or smallest)  sample? 

It is well known how to obtain the exact distributions fo r  these 

a l l  of which have the same  probability density, what i s  the n '  

extremes, but, in general, these functions a r e  quite complicated. Gumbel 

has derived simple asymptotic expressions (for large n ) for  the dis t r i -  

butions of the extremes, and these results a r e  the basis of this report. 1. 1, 1.2 

Gumbel' s results a r e  subdivided into three categories, according to 

the type of distribution for  the random variable x . The first, and most 

important, is the exponential-type, which deals with those distributions 

which approach either unity on their  right-hand ta i l  o r  zero on their left- 

hand ta i l  a t  l eas t  as  fast as <',\ exrr( 11: n t i a l .  

The second categci y c l ~ : ; ~ ? c  *h ith -cinlilmited distributions w h i c h  CJnly 

possess  a finite number of moments (e. g. ,  Cauchy density). A deliL<it; i h  

l imited to the right if it i s  identically z e r o  f o r  x greater  than some number 

C1 , 
number C 

s idered in  Gumbel' s third category. 

tained f r o m  the exponentiabtype by simple transformations, and since 

the most  common noise densities encountered in  practice fall  into the 

exponential class,  only that c lass  will be considered in this report .  

and limited to the left i f  it is identically zero for  x l e s s  than some 

Otherwise, i t  i s  unlimited. Limited distributions a r e  c3n- 2 '  

Since the las t  two types can be ob- 

Let f(x) and F(x) be the probability density function and the 

cumulative distribution function respectively of the random variable x . 
Then x will be said to be of the exponential-type if it satisfies one of the 
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1.3 two following equations: 

F o r  maximum values1 

where 

d f b )  f '  (x) = - . dx 

F o r  minimum values: 

The most  common examples of densities of this type a r e  the ex- 

ponential distribution itself, the Rayleigh distribution, and the chi-square 

distribution for maximum values, and the normal distribution for both 

maximum and minimum values. 

Equation (1. 1 )  ((1. 2))  insures that the right (left) hand ta i l  of the 

distribution behaves a s  an exponential. 

vation of the extreme-value densities' ' 4(see Appendix A ) .  

an a rb i t r a ry  density that satisfies the first condition, for  example, and 

using a Taylor s e r i e s  expansion about a parameter  he labels u Gumbel 

shows that, asymptotically, 

Gumhel shows this in his d e r i -  

Starting with 

n' 

1 -a (x-u,) 
n F(x) = 1 - -  e n 

where a and u a r e  defined as 

I 

n n 

1 F(un) = 1 -- n '  

and 

a n =nf(un), (1.4) 

n being the number of samples from which the maximum is chosen. 
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u is called the expected largest value. I ts  relation to n can n 

be thought of a s  follows: n is  'the number of samples one would have to 

take, on the average, to find a sample which is greater  than un . 
a i s  called the intensity function. In general, intensity functions n 

a(x) a r e  defined'' such that 

and represent  the probability that a value, known to be equal to o r  greater  

than x , i s  between x and x+dx . 
The analogous parameters  for  minimum values, u and a a r e  1 1 '  

defined a s  follows: 

1 F ( u l )  = - n '  

and 

a1 = n f ( u , ) .  (1. 6) 

Since the Taylor se r ies  expansion i s  taken about u (Or u ), the n 1 

important point to note i s  that for any distribution in the exponential class, 

except the exponential distribution itself, the Taylor se r ies  coefficients 

a r e  a l l  approximations. This means, of course, that when using Gumbel's 

resul ts ,  they must  only be used in an appropriate range about u (or ul). n 

Gumbel proceeds f rom this point to derive the final form of the 

distribution function for the extreme-value. 

nential. Specific ally, 

That fo rm is a double expo- 

-a (x-un) -e n F fx)=e max J' 

and 

( 1 . 7 )  

Since we a r e  not interested in the distribution of the extreme- 
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values, but ra ther  in the distribution of the initial variate on its tails ,  

these las t  two formulas a r e  not the important results.  

fo rms  for the initial variate (see Appendix A) a r e  

The limiting 

(1.. 9 )  

and 

F(x) = 1 ea l (x-u l )  . (1. 1 0 )  n x --a 

It should be noted that the probability of the initial variate being 

greater  than a fixed number can be obtained f rom the probability that the 

maximum value is greater  than that number directly. This can be shown 

easily a s  follows: 

Let  F(x) be the init ial  distribution, and @(x) be the distribution 

, we can always invert  the 
1.6 

of the maximum value. 

above equation, and, knowing (9 (x), obtain F(x). However, this i s  only 

convenient i f  we a r e  dealing with a single point, and even then it is more 

trouble than is necessary.  

say a likelihood-ratio equation, the equation would become extremely 

complex. 

Since @ (x) = [F(x)]" 

lf we should want to use F(x) in an equation, 

Therefore,  we will now leave Gumbel's final result, and go back to 

his intermediary result, namely, equations (1. 9)  and (1. 10). 
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1. 2 Relationship between EVT and Detection Theory 

In the previous work in nonparametric detection, the detection 

schemes were based upon various nonparametric statist ics,  most notably 

the rank tes t  or  some modification of the rank test .  

The main trouble with these tes ts  is  that they do not use  the amplitude 

information available f rom the data samples, but ra ther  use information 

such a s  the algebraic sigp of the sample o r  the relative ordering of the 

sample by size (rank). 

1. 7 ,  1.8,  1. 9, 1. 10 

It is the purpose of this report to present a detection scheme which 

This scheme is based on the observation does use  amplitude information, 

that the only par ts  of the unknown distributions that a r e  of interest  a r e  

the ta i ls  of those distributions. 

f r o m  Gumbel. 

This is precisely what we can obtain 

More specifically, i f  we knew the probability densities for  noise and 

signal-plus-noise, what we would do would be to fo rm the likelihood- 

ratio and solve for the threshold. 

distributions, we first take an initial s e r i e s  of measurements,  estimate 

U1,Un’ Q1 8 n ’  

Since we assume we do not know the 

and a and then fo rm the likelihood-ratio. That is, 

a n - an(x-un) 
f (x).- - e n n 1 

n 

and 

Thus, 

= P I  

(1. 11) 

(1. 12)  

(1. 1.3) 



-8 - 

where p is  the ratio of the aprior i  probabilities of sending signal-plus- 

noise and noise only. 

Solving eq. (1. 13) for x yields t 

x =  t 

a n  
n 1 1  u1 a l  t u n  an t In (- - 

a, n, 8) 
A 11 

A (1.14) 

and the false dismissal  Pfa F o r  P= 1, the false alarmprobability, 

probability, Pfd , a r e  : 

and 

a (x -u ) 1 t  1 Pfd = - ' e  
nl 

(1. 15) 

(1. 16) 

Of course, the u' s and a ' s  employed in eq. (1. 15) and eq. (1.16) 

a r e  only estimates of the t rue  values, since the actual distributions a r e  

unknown. However, we will initially assume the u' s and a' s a r e  known 

exactly. 

and thus gives an approximation to the actual system behavior. 

if, knowing the actual values of u and a ,  we cannot predict with rea-  

ity of e r r o r ,  then we cannot 

This then gives an upper bound to the performance of the system, 

(That is ,  

sonable accuracy the threshold and probabi 

hope to do so  using estimated values. ) 

Let us  i l lustrate the above concepts by considering a numerical 

example. Table (1) shows results obtained when x has a normal density 

with ze ro  mean and unit variance. It was computed by choosing a thres -  

hold, calculating the actual Pfa (that is, finding the a r e a  under an N(0, 1) 

curve for a l l  x greater  than the threshold), and then using eq. (1. 15) a t  
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the same threshold for different values of n . 
is  a range of n giving acceptable estimates for  the probability of e r r o r .  

That is, to measure a probability of e r r o r  equal to P 

acceptable sample sizes n which can be used. This result  can be seen 

f r o m  the Taylor series.  and 

since the coefficients in  the ser ies  are  only approximations (except for 

the exponential distribution), the only exact value we can find i s  F(u  ). 

It can be seen that there  

there a r e  certain e '  

Since the ser ies  was expanded about u n '  

n 

However, a t  x = u we have n '  

1 o2 

(1. 17) 1 
e n P = 1- F ( u n ) =  - S  

If we a r e  in  a reasonably restr ic ted range about x = u we will not 

have an exact estimate of F(x) , but we will have a '' good" estimate. 

" Good" here  is  defined as  whatever is acceptable to the particular situation. 

n '  

Hence, i f  we have a communication system in which the probability 

1 

fa 
of fa l se  a l a r m  is Pfa, the optimum value of n would be n = p . 
in  estimating the threshold of the system, we would want u 

a s  possible to the actual threshold, since the fur ther  away we are ,  the 

m o r e  inaccurate is  the Taylor series.  

Also, 

to be a s  close n 

1.35 3.16 2.  87 

1. 66 x 11 . 5  80.9 

-----__ 

10 

10 

10 

lo4  
4.74 16. 8 x 1. 36 

2 . 9  3.29 3.73 

5.83 3.73 2. 98 1 0 ' ~  

1.71 1 0 ' ~  3 .3  6. 41 x 
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1. 3 Estimation of Pa rame te r s  and Confidence Intervals 

Returning to the nonparametric communcation problem, we must  

first find a method to estimate the unknown parameters  ul,al, un and a n .  

There a r e  a variety of ways of accomplishing this, but only the simplest  

of these i s  presented here. 1. 11 

To this end, we must re turn to  Gumbel's double exponential dis- 

tribution. Using Gumbell s terminology, we call  y = a (x-u ) the reduced 

largest  variate (the word reduced" is used because y i s  dimensionless). 

n n 

Lf we l e t  tp (y) be the probability density function of y , we have 

-y-e -Y 
cp (Y)  = e 

The generating function of y is then 

-Y Let z = e . 

This gives 

-tlnz - z  0 
Gn(t)  = - e yt-z dz = e dz 

a3 

(1. 18) 

(1. 19) 

( 1 . 2 0 )  

-t -2 = [ z  e d z = r ( l - t )  , 
where 

dz t-1 e-z r(t) = f 
is the gamma function. 

Similarly, we can show that the generating function of the reduced 

smal les t  variate is  

Gl ( t )  = r(1tt) 

Since r I t l  IT 2 2  
(1) = - y,  y being Euler's constant, and I? (1)  = t y , 

we can  obtain the f i r s t  and second moments of y , and f rom these, the 
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I mean and variance of the extremevalues  themselves. 

This resul ts  in  the following expressions: 

E(x ) = E(xmin) = u - Y, 
1 1 l a  

lr 2 1  u = varkmax)  = -g- 7 n a n 

u 2 = var(xmin) = T 2  -6 -2 1 

"1 

(1.21) 

(1. 22) 

(1. 23) 

(1. 2 4 )  

If we now replace the theoretical means and variances with the 

sample means and sample variances of the extreme values, we will have 

two sets of two equations and two se ts  of two unknowns, and we can therefore 

solve for  the u' s and a' s . 
As mentioned above, the procedure is used because of its simplicity, 

not because i t  i s  optimum. 

a r e  various maximum-likelihood estimates that can be used. 

I€ more  accurate es t imates  a re  needed, there 

1. 12 , l .  :3,1. 14 

The trouble with these estimates is the difficulty in solving the resulting 

equations. 

Returning to the straightforward estimates,  the obvious questions 

a r e  how good a r e  they, and, more important, how good a r e  the resultant 

es t imates  of the probability of e r r o r  andthe threshold? 

The fact  that the sample mean and sample standard deviation 

a r e  asymptotically normal  leads to results which a r e  tractable. 

The following asymptotic results a r e  given by Gumbel: ' * I 5  The 

limiting means of the sample mean and sample standard deviation a r e  

the corresponding population values (that is, the actual mean and standard 

deviation of the distribution). Also, 
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A U 2 P,-1 
var  (U ) = - N ' (1.25)  

and 

+ ab fil t b2(F2-1)/4], (1. 2 6 )  A d  z 2  - 
var (ax 0 t b r) = -[a N 

- A where u is the sample standard deviation, x is the sample mean, 
0 

th -2, p being the r central  moment. Finally, , and P2 = v4 Pz 
2 - 3  

P, = P3 v&7 r 

N is  the number of extremes that are  used, each extreme coming f rom 

n independent samples (i. e. , there  will be a total of nN samples). 

Again using the generating function for  the reduced variate, we can 

compute P and P 

maximum values, and 4 = -1. 3 and P, = 5. 4 for minimum values. 

The final results are: aI=l. 3 and p, = 5. 4 for 1 2 '  

1 We therefore conclude that the estimates of u and ;;.are asympto- 

tically normal, unbiased estimates with variances given a s  follows: 

1 1.1 

a Na 
var  ( - )  =T , 

A 

and 

A 1.04 var(u) = - . 2 Na 

(1. 27)  

(1. 28) 

In order  to obtain confidence intervals on the estimates for the 

threshold and probability of e r r o r ,  we need the following results f rom 

C r ame  r : 1. 16 

1. I€ an arb i t ra ry  function of sample moments is con- 

tinuous in  some neighborhood of the cor responding population moments, 

if the function has continuous first and second derivatives with respect  

to the sample moments in that neighborhood, and if  the sample moments 

a r e  sums of independent identically distributed random variables which 

obey the standard (Lindeberg-Le/vy) central-limit theorem, then the function 

is asymptotically normal with parameters  7%. and IT 2 . 2 
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and f denote the value of the function f and 
2 m 2. I f f ,  f 

"I1 
its two f i r s t  o rder  partial  derivatives (assuming it is a function of just  

two sample moments) evaluated at  the point m 

(that i s ,  the population values), then 

= E(m ) and m 1 1 2 = E ( m Z )  

"?= f , (1. 2 9 )  

and 

U A  2 = var(ml)  f m  2 t 2 cov(ml, m ) f f t var(m ) f 2 . 
m 7  f 1 1 2  L 

2 m m  

(1. 30) 

F o r  the estimate of probability of e r ro r ,  two asymptotic d i s t r i -  

butions will be given. One will be for the case  when xt is a coilstant, 

such a s  an on-on system having a threshold which i s  always zero. 1. 17  

The other will be appropriate when xt is estimated I rom the u' s and 

a ' s  by eq. (1. 14). 

When x is constant'., the estimate for  the false-alarm probability, 
t 

written in  t e r m s  of the sample mean and sample variance of maximum 

values, is 

A 
P =  

fa 
1 
n 
- e Y 

- 
e (1. 31) 

A 2  2 If we let P, equal the value of Pfa evaluated at  Fn = E(Fn), and un = u 

and Pfa ~ and Pfa ; 2 t h e  corresponding values of the partial  derivatives of 

P 

A 

sg n' 

A n n 

fa  n 
A 

with respect  to f and u: respectively, then, 

(1. 31) 
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a r e  respectively the mean and variance of the asymptotic normal dis t r i -  

bution. A specific example will be given later.  

The 

F o r  

A 2  / cov(z ,u ) i s  shown in Cramer to be n n  
1. 18 - A 2  '3 cov(xn,un)  = - N *  

A 
t the means and variances of the limiting distributions of x 

and the est imate  of e r r o r  probability when the threshold is a random 

variable, we must apply the two dimensional version of Cramer '  s theorem, 
/ 

since we now have functions involving sample moments of two distributions, 

namely moments of minimum values, and moments of maximum values. 

I€, for either case,  f represents  the function to be estimated, f r ep re -  
/A 

sents  the estimate,  and f- , f22  , f -  , and fA2 represent  the appro- 
x1 9 X n n  

2 
n '  

- 
priate  par t ia l  derivatives (all evaluated at  Fn = E(xn), "," = u 

- 2 x1 = E(jT;), and 9 = u1 ) we:havw 
1 

q A =  f 9 
f (1. 34) 

and 
3 

(1. 35) 
These resul ts  s h ~ w  that, asymptotically, the est imates  of 

in te res t  have a limiting normal distribution. These distributions have 

as the i r  means the functions evaluated a t  the point where the sample 

moments a r e  equal to their  expected values, that is, the population 

moments . 
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Also, the limiting distributions have variances which go to zero 

1 a s R .  

Finally,  it should be emphasized that the functions we a r e  

estimating a r e  the revults based on the theoretical values of Gumbel. 

F o r  example, when we say that the mean of the limiting normal distribution 

of the fa l se  a l a r m  estimate i s  

is equal to L e'an(xt-un), not the exact false a l a r m  e r r o r  we would Pfa n 

have if  we knew the actual density function of the noise. In other words, 

it should always be remembered that we a r e  estimating statistically not 

what we really want, but ra ther  an approximation to what we want. 
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1. 4 Numerical Examples 

Several  examples will now be given so that it can be seen what type 

of confidence intervals these densities produce. 

the confidence intervals will be functions of the actual parameters ,  

which a re ,  of course, unknown. Therefore,in order  to evaluate the 

intervals, it i s  necessary to assume the actual fo rm of the probability 

density functions. 

In a l l  cases  except one, 

The one exception to the above is the confidence interval on a .  

We could find a confidence interval on a directly by using equations 

(1. 29) and (1. 30). However, i f  we obtain intervals on -, using the fact  

that it is asymptotically unbiased along with eq. (1. 27), our results will 

be simpler,  

1 
Q 

1 That the confidence interval on ( X )  does not depend on any 
0 

parametenscan be shown as follows: 

1 
Pr[ aa&< ba] = Pr[ D(r- w- hi 

- *  

C 
1 = -  
J z  

where Cp 4x1 is  the cumulative N(0, 1) d i s t r i h t i o n  (i. e . ,  

dY). 
1 

Table (2)  below summarizes  some numerical results for  N = 20 . 
TABLE (2) 

Confidence Intervals on *a 

a b 

. 5  2 

. 67 1. 5 

Pr[aa - < 8 5 ba] 

( ~ ( 4 .  27)-(~(-2.135) = . 985 

q ( 2 .  1.35)-(~(-1. 41) = . 899 

. 8  1. 25 (~(1. 07) - c p ( - .  854) = . 661 
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A To obtain confidence intervals on u , i t  is necessary to assume n 

a specific distribution. 

obtain the parameters  a 

we can show that the 

Therefore, using an N(0, L) with n = 100, we 

= 2. 66 and un = 2. 33 . Proceedings a s  above, n 

n Pr[aun S u n I bu n ] =+[  (b-l)(.439 anun)] - (p[ (a- l ) ( .  439anun)] 

Specifically, with the above numbers and N = 20, we have 

Pr[. 9un 5 un 5 1. lu,] = ( ~ ( 2 .  73)-(p(-2. 73)= . 99367, h 

and 

A Pr[. 8un 5 u 1. 2un] = cp(1. 3 7 )  -cp(-1. 37)= . 829 . 
n 

It can be seen that u can be estimated much more accurately than an. n 

As a final example, we will use equations (1. 32) and (1. 33) to obtain 

a confidence interval on the false-alarm estimate. 

obtain 

and 

A IT I %= 
n 

From eq. (1. 31), we 

1. 19 Also, webave  
c r 2  n 

n N 
- 

var(x ) = - a 

1 
4- , 

N 

2 p2-1 ,a,(,^ 2, = u n  - 
n 



and 

. .  

u 7 p3 c o v ( F  u ) = - n' n N '  

Inserting these expressions in equations (1. 3 2 )  and (1. 3 3 ) ,  along 

with the appropriate moments calculated f rom eq. (1. 20), and forming the 

ratio of the mean of P to i ts  standard deviation, we obtain 
.A 

fa 

J - =  
3 / 2  (xt-un) l . l (x  -u L t n' 

'fa 1 r [ I t  - t TI 
2 2 .  404(6)' U A  

U n 0- n 

We can now compute the confidence interval a s  follows: 

I 

A s  a specific example, consider a Rayleigh random variable, 

that is, one whose probability density function is 

2 . .  x 
- e  2 
X - E 2  

U 
1 

0 

Using values of u =1, x, = 4. 03  

x > o  

x < o  

L 
n = 100, un = 3 .  04 - 

pfa 

"P 
N = 20, we obtain 7 = 1. 31, and 

fa  

an = 3 .  04, and 
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1 , 5  Review 

Before proceeding to the study of communication systems for 

which this method can be applied, it might be well to review what has 

been done in this chapter. 

The fundamental theory for a nonparametric detector has been 

This theory i s  based on Gumbel' s theory of extreme-values. given. 

The one restr ic t ion to the noise considered in  this report  is that it be 

of the exponential-type. This however, i s  not a necessary restriction, 

since other forms  of Gumbel' s asymptotes can be used. 

Using this theory, estimates of those par ts  of the noise and 

signal-plus -noise distributions appropriate to probability of e r r o r  measure  - 
ment and threshold determination (i. e. , the ta i ls  of the distributions) 

a r e  formed. 

paramet r ic  detection in  various communication systems, and also how 

it compares to other nonparametric schemes. 

s t r e s sed  that the reason why it should perform nearly a s  well a s  parametr ic  

systems,  and also possibly better than other nonparametric systems, i s  

that it u ses  the amplitude information of the received samples as  opposed 

to rank o r  other more  qualitative information. 

What remains to be seen is how i t  compares to optimum 

It should again be 

Finally, i t  should be pointed out that there a r e  other ways to estimate 

probability functions besides using Gumbel' s theory. However, these 

al ternate  methods have drawbacks to them which a r e  eliminated by using 

EVT . 
One such method is to construct 3ar graph-type estimates of the 

1. 21 
probability density function, 2o commonly called histograms. 

However, histograms a r e  only accurate around the center of the dis t r i -  

bution, not around the tails, and in any communication system with low 
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e r r o r  rates,  a s  stated above, the tails a r e  the most  important par t  

of the distribution. Also, histograms a r e  not unique, since they depend 

upon the size of the amplitude windows that a r e  used. 

Another approach would be to use either empirical  distribution 

functians, that is, functions G(x) which a r e  defined such that 

n 

G(x) = 1 n U(X-x.), 1 
i 

where U(x) is  the unit step function and xi, i= 1,. . . n , a r e  the sample 

values, o r  functions of empir ical  distribution functions. '' 2 2 J  '* 23 However, 

empir ical  distribution functions a r e  much more  difficult to deal with 

analytically than is extreme-value theory, and they also have the same 

drawback a s  histograms in  that they a r e  most useful in the center of 

the distribution, not on the tails .  
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CHAPTER 2 - NONPARAMETRIC DETECTION USING EVT 

2 . 1  The EVT Dectector 

In this chapter, the object is to detect a low-pass binary signal 

in  stationary additive noise (the one exception will be when impulse noise 

is introduced). In most examples considered here, we will attempt to  

decide between noise only o r  signal-plus-noise (i. e . ,  an on-off system). 

In a l l  cases ,  the aprior i  probabilities of t ransmission of the binary signals 

will be assumed to be equal. 

It was pointed out previously that to estimate a probability of e r r o r ,  

. However, since we do not know 1 
Po P(E), we would want n to equal 

beforehand what probability of e r r o r  exists, we do not know what value of 

n to use. Therefore, a tr ial-and-error procedure is  employed. 

Consider first the noise distribution. An initial value of n will be 

samples will be taken and will be calculated. picked, say  nln . Nnln 

In this scheme, it is not necessary to use  the estimate for a . This i s  

desirable, since u can be estimated much more accurately than a . 
At this point, it should be noted that the Nn 

In 

n 

n n 

samples will be In 

obtained during a learning period from a controlled noise distribution. 

That is, samples will be taken from a t ime waveform which is known 

not to contain signal. 

The sample size is  then increased f rom Nn to NnZn, a n d 3  In 2n is 

u will be greater  than u a s  can be seen 2n’ ~ n ,  2n In ’ calculated. F o r  n 

f r o m  the definition of un, eq. (1. 3 ) .  

say, m times.  m w i l l  be determined i s  a s  follows: 

This procedure will be repeated, 

Besides the control se t  of noise samples, we will need another control 

set, this t ime of signal-plus-noise. 

this control set ,  except that minimum instead of maximum values a r e  

used. 

The same  procedure is used on 

h 
That is, instead of obtaining an increasing sequence of un’s , 
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A we will now obtain a decreasing sequence of ull s . 
point occurs when the two sequences " intersect"  (that is, where u fi: 9). 
The point of intersection is the threshold of the system, 

The termination 

A A 

n 

and if the final 

then the estimates of the two types 11 ' sample s izes  were Nn 

of e r r o r  a r e  

and Nn mn 

and 

It might be wondered at  this point why the expressions for the 

threshold and probability of e r r o r  a r e  different f rom those obtained i n  

Chapter 1 .  Actually, these expressions a r e  a special  case of the resul ts  

derived there. If, in  the resul ts  of Chapter 1, u1 is se t  equal to un and 

both u and u a r e  se t  equal to the threshold x and i f  furthermore,  it 

is noted that for  equal apr ior i  probabilities, fn(xt) = fs+n(xt), the resul ts  

of Chapter 1 reduce to the above results. 

1 n t '  

The advantage o f  using th i s  

special  case  is that the resul ts  here, are ,  at  least  theoretically, exact 

(i. e. , i f  we could estimate u 

bil i t ies of e r r o r  would be exact). 

and u1 exactly, the threshold and proba- 

This is not true in  the more general  

n 

case, since, as was pointed out before, the two Taylor s e r i e s  a r e  only 

exact at the points u and u1 respectively. n 

At the s t a r t  of the procedure, the change f r o m  one value of n to 

another value can be large. As the two sequences approach each other, 

the change in n can be made mxch sr??aller. However, since the values 

of u and u a r e  only estimates of u and u respectively, and there  - 
f o r e  not exact, there is no point in changing n by too small  an amount. 

A A 
n 1 11 1 
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\ 
I Finally, i f  n becomes too large to fit Nn samples in the allotted 

learning period, we can always stop a t  some tolerable value and go back to 

the procedure given in  Chapter 1 , that is, estimate both the ut  s and 

I the a's .  
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I 
I 2 .2  Examples 

2 .2 .1  Narrowband FM for high SNR and Gaussian Noise 

This i s  probably the simplest  situation, since for high SNR, 

I the output of a narrowband F M  discriminator can be represented as  just  

a signal in  additive gaussian noise. The high SNR and small  modulation 

index enables one to assume the number of e r r o r s  that occur because of 

spikes can be neglected. 2*1  F o r  this situation, a s  well a s  any other 

case  in  which the noise has  a symmetric density and the signal-plus-noise 

distribution is just  a shift  i n  mean of the noise distribution, either the 

method of Chapter 1 o r  the method of this chapter gives theoretically exact 

results,  as is demonstrated below. 

for the same number of al = n 

Since the signal distribution is just  a shift of the noise d is t r i -  

F o r  symmetr ic  distributions, 

samples.  

bution, and since the a ' s  a r e  not affected by a shift, an of the noise 

density will equal a of the signal-plus-noise density. 1 
Also, fo r  a symmetric density with mean equal to p , u1 = 2 p u n  . 

If the density is now shifted by an amount A , both u and un will shift  

by that amount. Therefore,  the relationship between u for the noise 

distribution, and u for the signal distribution,is u1 = A-un. 

f r o m  eq. (1.14), 

1 

n 

Hence, 1 

a n 
A-u t u n  A u a  t u a  t l n r  u1 t u  

- - -  n -  n 
2 2 '  

- - 
2 T 

1 1  n n  

n 
x =  a1 f a t 

which, of course, is the optimum threshold. 

To obtain some feeling as to how well the parameters  can be 

est imated for  a normal density, calculations were made with the aid 

of a table of normal  random variables with n = 100 and N=10, 20, and 40. 

The resu l t s  a r e  given below in Table (3). 
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N =  40 N 20 N= 10 

2.133 2 .201  2. 312 

- _I ._IC 

TABLE (3) 

Actual Value 

2.33 

Estimates of u and n from N(0,l) Density n-n 

A 
U n 

2. 38 2. 36 2 . 5  2. 664 A a-. n 

2. 2. 2 On-Off Systems (Non coherent Detection) 

If a noncoherent detector is used to detect a constant signal in 

additive gaussian noise, the densities at the output of the envelope detcctors 

a r e  Rayleigh for noise alone, and Rician for signal-plus-noise.2LZ That 

is, the probability density function ( pdf) for  noise alone is 

2 

2 
X - -  

v(x) 8 
X 2u 

fn(X) = - e 2 
and the pdf fo~s igna l -P lus-noiSe  is -4 - Az 2 

x 2u e 2 r  f (x) = - e 
U 

2 
U 

s t n  

where. v(x) is the unit step function. 

The Rician density might at  f i rs t  s eem to present a difficulty, 

since the portion of it that interest  us i s  its lef thand tail,  which goes to zero 

as x , not e-lxlas i s  required of exponential-type distributions. Lf, however, 

we a r e  dealing with high SNR , a l a r g e  portion of the left-hand tail  of the 

Rician is dominated by an exponential behavior. 2. Specifically, for 

l a rge  SNR , the behavior of the Rician a t  the threshold will be exponential. 

A s  an example, le t  u s  assume we have a Rician pdf. with para-  

m e t e r s  A =  8 and u = 1, and a Rayleigh pdf  with parameter .  u = 1. The 

optimum threshold, for  equal apr ior i  probabilities, i s  then 4. 33 . 
Using a n goodll value of n=lO , we have u = a = 4. 291 fo r  the Rayleigh, 

4 
n n  
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and u If we inser t  these values 

into the formula for the threshold, eq. (1. 1 4 ) ,  we calculate x = 4. 35, 

which i s  in  excellent agreement with the optimum value. 

- 4. 38 and al = 4. 21 for  the Rician. 1 -  

t 

To go to a more  realist ic situation, using random Rayleigh and Rician 

numbers, a system with A = 7. 35, cr = 1, n = 100, and N = 20 was simulated, 

Table ( 4 )  summarizes  the results. 1 Note that n = 100 i s  not near - o r  
7 Pfa . Yet the system performs well, showing that the init ial  estimates % 

can be off and reasonable resul ts  can still be expected. Also note that 

we a r e  working with a relatively high probability of e r r o r  (i. e . ,  we a r e  not 

very  far out on the tails). This is significant because the exponential approxi- 

mations, eqs. (1. 9) and (1. l o ) ,  which result f r o m  eqs. (1. 1) and (1. 21, 

become more  accurate the fur ther  out we a r e  on the tails. In other words, 

fo r  lower probabilities of e r ro r ,  we can expect even better results.  

TABLE (4) 

Comparison of Experimental Results with Optimum Values 

Variable Actual Value Experimental Result 
Optimum and/or 

U 3. 04  3.11 

a 3. 04  2. 84 

5 .  1 4. 95 

2. 65 3. 01 

4. 03 4. 04  

n 

n 

1 U 

al 

t X 

Pfd , 4 0 4 ~ 1 0 ~ ~  .64x10m3 

Pfa . 3 3 ~ 1 0 - ~  . 7  1%10-~ 

If a square law detector had been used instead of an envelope detector, 

the two probability distributions would have been a s  follows: 
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M F I  

and 

f 

Z I  Sq. Law Det.  - 

A s  before, for  high SNR, the signal-plus-noise distribution i s  basically an 

exponential a t  the threshold. 

4 1  

As an example, using exact values for  un, an,ul, and al i f  we again 

4 take A 7 8 and n = 10 , the optimum threshold i s  18. 8 , while the threshold 

L - X  

predicted by eq. (1. 14) i s  18. 5 e 

2. 2. 3 On-Qn-System 

Consider ap  FSE system which transmits either oo+ A. or  o -A . 
0 0  

The signals a r e  one of two orthogonal waveforms. The received signal will 

be the difference between the outputs of the two square-law detectors in 

Fig. (2. 1). The input noise is white and gaussian. 

Binary FSK Dectector 

Figure (2. 1) 
In this type of system, the threshold i s  always zero, so that the only 

est imate  required is that of the probability of e r r o r .  To see whether 

Gumbel 's  theory applies, we need the density a t  the output. This density 

is basically t h e  convQlution of the densities of z and z 1 2 '  the outputs of the 

two square  law detectors. Assume signal one was sent. The density of 

z is given by eq. (2.  4), and the density of z2 is given by eq. (2. 3).  1 
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The ref o r e, 

2 - - -  ex/' 7 e-' e-* I2 I o ( A D )  dz , 
a 4 

x > o  

{: x <  0 
where a = 

2 
Making the change of variable z = 5 , we obtain 

x >  0 

x < o  
t (2.7) 

which can be integrated to yield 

e-A2/4 e x Q(A/JIZ , 42x1 

- e  -A2/4 ex 
f(x) = 

(2. 5) 

2 2  
2. 4, 2. 5 a tx 

where Q(a, b)  = 7 x e' (7) I (ax) dx is Marcum's  Q-function. 
0 b 

By noting that Q(a, 0 )  = 1, and by again dealing with a large SNR (so 

2 that A / 4 > >  x f o r  x near Zero), it can be seen that in the vicinity of the 

threshold xt = 0 , the density of x behaves a s  an exponential. 

Lf both signals a r e  of equal strength, the two types of e r r o r s  will 

be the same.  Also, since we already know the threshold, only one learning 

sequence of bls is necessary,  and this sequence can stop whenever the value 

of u becomes zero  o r  close enough to zero to give the required accuracy. A 
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2 . 2 .  4 Impulse noise 

I When impulse noise is present, as in  telephone lines, detection 

becomes much more  difficult. 

and therefore difficult to model, and also because i t  is not always present 

(that is, it is not continuous in time). 

This is because impulse noise is nonstationary 

~ 

2 .  6, 2. 7, 2. 8 

The problem of finding a good representative model will simply 

be ignored. 

delta function with random energy and B random time delay. 

The model used for  a single impulse will be a mathematical 

The second problem will be resolved by using two different thresholds. 

The first threshold will correspond to a n  impulse (or  impulses) being absent 

during the bit interval, and the second threshold will be used when impulses 

a r e  present. 

The presence o r  absence of an impulse will be determined at  the 

input of the system, not the output. 

can usually be recognized on sight, whereas once they have been passed 

through a detection system, they basically act  the same way a signal does, 

a s  an increase in  the mean of the distribution (or, equivalently, a s  an 

increase  in the DC component of the time waveform). 

This is because impulses a t  the input 

Picking the first threshold (without impulses) will be done a s  before. 

It must  be remembered, however, that during the learning periods for  noise 

and signal-plus-noise, only those samples should be used where an impulse 

did not occur. 

Picking the second threshold is much more  difficult. We now need 

two additional learning periods, one with regular" (say gaussian) noise 

plus impulse noise, and one with signal-plus -I' r egda r"  noise plus impulse 

noise. The trouble is that we do not 

know the height of any impulse that occurs, plus we do not know how many 

will occur  in a given bit interval. 

However, th i s  is not the difficulty. 

We could probably find 
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some distribution for both the energy and the number of impulses in a given 

interval of time; however, due to the nonstationarity of impulse noise, these 

might not be meaningful, Therefore, what will be done will be to choose 

some average height and some average number of pulses per interval, 

based on information received during the learning period. 

effect, what we a r e  doing is simply shifting t5e f i r s t  threshold upward by 

In 

s o me ' ' r e a s ona ble ' a mount. 

More than two thresholds could be used, but for the sake of simplicity, 

we will use  only two. 

The specific system to be analyzed i s  given in Fig. (2. 2 ) .  It is  the 

same on-off system that was previously discussed , except that now, impulse 

noise has  been added.to the gaussian noise. 

On-Off Detector 

Figure ( 2 . 2 )  

(2.  8 )  

f o r  (n-1) T 5 t I nT and 0 C k c 1, and where @, k, and B a r e  random 

variables, 

The fact  that only one impulse was used instead of a t ra in  of impulses 

does not lessen  the generality of the example, because once the impulse goes 

through the matched filter, it becnmesS, a s  mentioned previously, just an 

increase  in DC value. 

is effectively the same a s  putting more than one impulse in, the sum of 

whose heights add up to the f i r s t  one- 

Therefore, putting one impulse in of unknown height 
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The output of the matched f i l ter  (matched to s in  ut) ,  is 

y(t)  = u(t) sin(ut+@) - v(t)  cos ( u t +  a), where 

u ( T )  = lT ng( r) cos (WTf0)dT t B cos(w (n- l+k)T f t , )  = N f N g impulse, 

and 
1 AT 

v(T: = 6 t 1 n ( T )  sin(wT t 8 )  d r  4- B sin(w(n-1tk)Tte)  
6 0 

1 signal present 
- 6 =  { .- - AT6 f N ' t N' impulse 2 g 0 signal absent 

Therefore, the output of the envelope detector will, in either case, 

be Rician distributed. If s i p a l  i s  present, i twillhave a spectral  component 

- AT + N '  and i f  signal i s  absent, it will have a spectral  Component 2 impulse ' 

Of Nirnpulse 

We have shown that for high SNR, the left-hand tail  of a Rician be- 

haves as a n  exponential near the threshold, and since the r ighthand tail  

behaves a s  an exponential, we a r e  justified in using Gumbel' s theory. 

Consequently, the first threshold we would use,  i. e . ,  the threshold 

when impulses a r e  not present, would be found exactly as in the example 

on on-off systems in Section. 2. 2. 2 . 
The threshold when impulses a re  present would be that determined 

by two Rician densities, with both spectral components being based 

upon some average value of B. 
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2. 3 Comparison with Rank Tes t  

The rank tes t  is a nonparametric test2' which has been frequently 

The tes t  works a s  follows: 

These 

A set  of unknown samples a r e  then taken, all  

used a s  the basis f o r  a nonparametric detector. 

A learning period is available during which noise samples a r e  taken. 

samples fo rm a control set. 

of which come f rom the same density, and a r e  interordered with the control 

se t  such that the smallest  sample 

Each sample i s  now given a rank equal to  i t s  ordering position (i. e . ,  the 

smallest  sample has rank = 1, the second smallest  has rank = 2, etc. ). 

is  f i rs t  and the la rges t  sample i s  last .  

After this has been done, the ranks of the unknown 

samples a r e  added together, and i f  this sum is greater  than a predetermined 

threshold, it is decided that signal is present. 

The intuitive justification for this method is that i f  signal is absent, 

both the control se t  of samples and the received set  of samples a r e  f rom 

the same  distribution, namely the noise distribution, and therefore they 

should o rde r  amongst each other fairly uniformly. 

On the other hand, if signal i s  present, the unknown set  should be 

shifted to the right due to its higher mean, and therefore the ranks in this 

case  should be higher than the ranks in  the f i r s t  case. 

The rank statist ic has been proven to be asymptotically normal 

under both signal and no signal conditions. 2'  lo' 2'  l 1  Since we need both 

densit ies i n  order  to evaluate the system, their  means and variances will 

now be computed. 

Le t  the control s e t  of noise samples consist of n X I S ,  and let the 

unknown se t  consist 

N(0, 1) distribution, 

Le t  T be the 

y 
th the rank  of the i 

of m yIs . The x's will be assumed to cGme f r z ~ ~  as 

and the y ' s  f rom an N(A, 1 )  distribution. 
m 

statist ic we seek. That is, T = r i ,  where r .  1 i s  
i= 1 
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Define a new statist ic W equal to the total number of x's that a r e  

less  than y ' s  . F o r  example, i f  we have the sequence x x y x y y 

W would equal 8 , since there a r e  two x ' s  l e s s  than y 

t h a n y  and y 2 

1 2  1 3  2 3 x 4 '  

and three x's l e s s  
1 '  

3 '  

We will first compute the mean and variance of W , and then use  them 

to obtain the mean and variance of T . 
Then sij has an N(-A, 2 )  density. Therefore,  Let 'ij = x. 1 ' Y j '  

Pr(x. < y)  = Pr(xi-y = s < 0) = .d j i j  

This yields 

A A A 
E ( Z i j )  = 1 cp(  -) t 0 [l - cp (-)I = cp(-)  , JT f i  f i  

2 A 
E(z . . )  = ~ p (  -) 8 

2 1J 

A A and theerefore 
' var(z . . )  = cp(-) [I - cp(-)I 

1J n 6 
Similarly, 

) , note that 
Zhk To obtain the cov(zij, 

To calculate this quantity, which changes with different combinations 
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of subscripts, there a r e  four possible cases which must be considered. 

(1) F o r  i= h, and j=k ,  

x (2)  F o r i  f h, and j # k , P2 = cp2 ( - )  

( 3 )  F o r  i = h and j 4 k, P3 = Prf,xi < min (yj, y,)] . 
(4) For i # h and j = k , P4 = Pr[max (x xh) < yj] 

f i  

i' 

Let us look a t  case (3).  

F(s)  = 1 - [ P r ( y  > s)]' = 1 - [l-cp(s-A)] , o r  

f(s) = 2[1-cp(s-A)] - e 

Let s = min(y.,  yk) Then 
2 

2 1 - ( s - A )  /2 

J2TT 
This yields 

00 a3 

Pr(x. < s ) 2 $  f X. (xi)dxi f s ( s )  ds = 
1 -00 1 X. 

1 

a3 
J"f (xi) dx. 2[1-cp(s-A)Jd cp(s-A) = 

x. 
1 

X. -a3 1 

T o  calculate P4, we must  compute the probability Pr [max(xi, xh) < y.]. 
J 

The derivation is very similar to the above one and will not be given. 

The end resu l t  is that P4 = P j  . 
I 

Therefore, we have 

cp(  A) [I-(p(-e)] i=h ,  j = k  

i#h ,  j # k  
J z d  & 

2' A i=h,  j # k  or 
P 3 - T  A (- i f h ,  j = k  

cov(z.., Zhk) = 
13 

Finally, 

'* 

P cannot be evaluated in  closed f o r m  and is done numerically for  
3 

each individual case. 
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It now remains to expres9 T in  t e rms  of W and to obtain i t s  

mean and variance. 

th Let r .  be the rank of the i y . This means there  aye r . - i  x's 

1 i' 

1 1 

l ess  than y. . 
there  a r e  r.-1 total  samples l e s s  than y 

leaving r -1-(i-1) = r.-i x's less  than y 

This can be seen by noting that, if r. is the rank of y 
1 

and i-1 y ' s  less  than y.  thus 
1 i '  1 '  

i 1 i '  
Now we sum r -i f rom 1 to m . 

i 

since 

I But 
m 

(ri-i) = w , 
i= 1 

so we have 

It now follows that 

- -  
var(T)  = var(W)* 

and 

For noise only) A = 0 , and the above resul ts  reduce to 

mn 
4 var(T)  = 

(2.  9 )  

(2.10) 

(2.11) 

(2.11) 

(2. i 3 j  

When using these results, i t  must be remembered that they a r e  only 

t r u e  asymptotically, that is, for n and m very large,  
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Beforewe can compare this method of detection with the EVT 

detector proposed in  Chapter 1, the differences between the two techniques 

must be recognized and reconciled in some way in o rde r  to come up with 

a meaningful comparison. 

The rank tes t  s ta r t s  out with n control samples of noise, and then 

makes a decision of noise or signal on the basis of m test  samples.  On 

the other hand, the method based upon EVT uses  Nnn control noise samples 

and Nn control signal-plus-noise samples, but then makes i ts  decision 

on just  one tes t  sample. 

1 

Furtheremore,  note that the rank tes t  has to be 

used a s  a radar-type detector, that is ,  a detector which picks a threshold 

which satisfies one type of e r r o r  requirement, say the false  a l a r m  proba- 

bility, and accepts the resulting false dismissal  e r r o r ,  

is because the optimum threshold comes f rom a likelihood-ratio, whereas 

the rank tes t  was obtained independently of the likelihood-ratio . In con- 

t ras t ,  one of the main objects of the method proposed here  i s  to estimate 

the optimum threshold. 

l 2  This 

Therefore,  the following method of comparison will be used: The  

learning period of the rank test will consist of n = N(n tnl), the number 

of samples  in both learning periods of the EVT test .  

n 

However, to compensate 

for the fact  that the rank tes t  uses  m tes t  samples,as opposed to only one 

f o r  the EVT test ,  the noise power of the rank detector will be increased by 

a factor  of m (i. e . ,  the voltage SNR of the rank tes t  will be decreased by 

a f ac to r  of - f r o m  that of the EVT tes t ) .  This i s  reasonable, because 

in o rde r  to take m times a s  many independent samples in the same one- 
6 

bit interval, the bandwidth of the system using the rank test  must  b e  

increased by a factor of m . But this is just  another way of saying that 

the noise power is increased by a factor of m . 
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Finally, to avoid the problem of the two systems arriving at  thresholds 

in  different manners,  a range of thresholds will be determined for the 

n EVT detector (the range being chosen such that xt l ies  within flO%of u 

with a confidence coefficient of greater than 99"/d, and the rank detector 

will be given the same false a l a rm probability a t  each threshold. 

corresponding false  dimissal  probabilities of the two will be compared. 

The 

3 Specifically, for  the EVT test ,  we will take nn = nl = 10 , N = 100, 

5 and a voltage SNR = 6 . This means that for the rank tes t ,  n = 2 x 10 . 

Also fo r  the rank test ,  we will take m = 100, which means the SNR for 

- . 6 .  it equals - - 6 

A 6 f i  
The values picked for the rank test results in cp (  -) = cp( -) 

.Jz Jz 
= cp(. 425) = . 6 6 4 ,  and P3 = , 51 . Table ( 5 )  summarizes  the results.  

TABLE (5) 

ComDarison of Rank Tes t  with EVT Tes t  

EVT Threshold Rank Threshold z f a  - gfd (rank) _Pfd(EVT) 

2 .  78 (= .  9un) 11. 6 1  x 10 2. 72 x 8. 2 x 6. 4 1 ~ 1 0 ~ ~  

3. 09 (= 11.79 x 10 1 . 0 1 ~  2 .  42 x ~ O - ~  1. 81 x 
4 11. 96 x 10 

Un) 

6. 3 9 ~ 1 0 - ~  4. 6 6 ~ 1 0 - ~  3. 4 = (1. lu,) 3. 37x 10- 

It can be seen that while the E V T  detector gives a smaller false 

d i smis sa l  probability, the difference is not great.  The significant resul t  

is  a considerable savings in  receiver complexity. 

the rank detector must, fo r  every decision, rank the 100 test  samples 

amongst the 2 x 10 learning samples and sum . their ranks. The EVT 

detector  merely compares the amplitude of a single sample with the 

thre  s hold. 

This results because 

5 
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Finally, it might be argued that this result  was just  a coincidence 

(i. e. , given different values of n, m, and the rank SNR, the rank tes t  

might outperform the EVT test) .  

The reason i s  a s  follows: 

tector would do if it knew the noise was gaussian. 

This however, can be shown to be impossible. 

Consider what the optimum Neymaq-Pearson de- 

It would, after forming 

the likelihood-ratio and choosing the false a l a r m  probability it wanted, 

decide a signal was present each time the threshold corresponding to that 

specific fa lse  a l a r m  probability was exceeded. That is, the optimum Neyman- 

Pearson  detector, in  this situation,would perform precisely as  the EVT de- 

, for 2. 13 tector. Therefore,  by definition of a Neyman-Pearson detector, 

that fa lse  a l a r m  rate,  neither the rank detector nor any other detector 

working under the same conditions could do better than the EVT detector. 

At best, any other detector would do as well. 

Summarizing, we can now see  two advantages of the EVT test .  One, 

the ease  of using i t  after the learning period is over, and two, the possibility 

of actually doing a s  well a s  the optimum parametric detector. 
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CHAPTER 3 - FADING 

3.1 Fixed Threshold 

In this chapter, the detection of a fading signal will be considered 

in two ways. The first considers the use of a constant threshold, and 

the second considers an adaptive detector. The fading is assumed to be 

slow with respect  to bit  duration, and is assumed to be governed by a 

Rician probability distribution. 3 '  '' 3' A Rician density was chosen 

ra ther  than the more  common Rayleigh density in  order  to prevent very 

la rge  fades. The reason for  this, i s  that since we a r e  using 

EVT, we want to apply it on thetai ls  of the densities, and this will not 

be the case  for  deep fades. 

The method used in  this first section is only valid when we a re  

This dealing with a signal whose amplitude does not fluctuate greatly. 

res t r ic t ion is relaxed in  Section 3. 2. Because the variance is small, 

the probability density is approximated by a gaussian density. Specifically, 

we assume the fading has an amplitude distribution given by 

1 2lJ fA(A) = - e 
&IT 

where A 

of signal-plus -noise remains functionally the same  (undistorted) for any 

is the spectral  component of the fade. If we assume the density 
0 

value of A, the only change being a shift in mean, the parameter  a l  will 

remain  constant and the parameter  u will vary in the same way as  the 

mean. 

u1 and al  by repiacing Fjx) with F(x-b) ,  b being an arb i t ra ry  shift. 

1 
This can be seen f rom the defining equations (1. 5) and (1. 6)  for 

Therefore,  if eq. ( 3 .  1) is  the density of A, the density of u1 is 
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1 20- L. f (u,) = - e 9 

u1 &U 
( 3 . 2 )  

where u is the value of u that corresponds to A = Ao. Averaging our 

estimate of the false dismissal  probability over the fade gives 

0 1 

a (x -u ) 1 t  1 e is an approximation which n Note that while the expression 

is only valid fo r  cer ta in  values of ul ,  we a r e  averaging it over a l l  possible 

values. 

fading amplitudes confined to a limited region. 

why we chose a Rician fading pdf with a large A 

Rayleigh fading. 

to  be averaged, since the noise does not  fade. 

This is the reason why it was important to have the possible 

In other words, this is 

and small u instead of 
0 

Also note that the f a l s e  a l a rm estimate does not have 

Equation ( 3 .  3 )  can be integrated by combining the exponentials 

and completing the square in  the exponent. 
2 2  

The resul t  is 

a1 

(3.4) 
1 al(xt-uo) e 2 < Pfd > = - e n 

Next, we must  establish the region of validity of eq. (3.4). We 

originally found where EVT was applicable by considering the Taylor 

s e r i e s  derivation. However, now that we have integrated over one of 

the parameters ,  it is no longer obvious where Gumbel 's  theory should 

apply 

To solve this problem, we f i r s t  write that G(xt), thetrue average 

f als e d i s  mi s s a1 probability , is 
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Next, we set  eq. (3 .4)  equal to eq. (3.5) :  

2 2  
IJ 

2 = G(xJ  . 1 Q (x  -u 1 1 t o e  e - 
n 

Solving, we obtain 
c) 
L 

al IJ - - 1 In [ n G(xt ) ]  . 2 u - x  = o t  

( 3 . 6 )  

(3.7) 

However, G ( x  ) is unknown, so we must use some approximation to obtain t 

the desired region. As a first approximation, le t  us assume that 

is negligable, thus leaving 

2 
al 

2 u - x =  o t  ( 3 . 8 )  

As a numerical  example, consider a system operating in  the 

presence of additive gaussian noise. The average false dismissal  proba- 

bility is then ( A - A ~ ) ~  

- -  ( Y  -A) - 2  
dydA. 2u e Ja i \x t -A)  fA(A) dA = sa sxt - 1 2 1 e 

-00 -03 -a& Jz;; 0- 
9 )  

This can be evaluated by making the following change of variables: 

y = x t A + x t .  

Equation ( 3 .  9) then simplifies to 
2 

(x++) 
- 2  2cr 

e dxdA = s"s" 1 -2 - 1 
e - 

-00 -6 &cr, 

Pr (x < -A) = Pr (x t A = z <  0) . 
2 

Since x = N (-xt, l ) ,  and A = N(A IJ ), we have 
0, 

2 
z = N(Ao - xt, 1 t c ) . 

Therefore ,  



-42- 

x t o  - A  A - X  

(3.10) 

The resul ts  of the comparison a r e  given in Table (6) ,  computed 

4 with al  = 3 . 9 4 4  and n = 10 . 

Table ( 6 )  

Range of Validity of Fading Approximation 

2 

A(nG(xt )  ) 
al O- 

A exD U '2 = A 

1 1 .  68 1 - 2  . 9 7  - 5 . 6  

&- 3. 36 3-5 1.43 x - . 5 8  
-6  

2 6. 7 2  8 - 1  1 1 . 9 6  x 10 - .133 x l o - '  

In this table, A i s  the experimental range of differences be - 
exP 

tween u and x over which eq ( 3 . 4 )  was a reasonable" estimate of 

eq. (3 .  10) .  Reasonablef1 he re  means within a factor of 4 or  5. 

0 t 

A nG(x ) is the corresponding range in the product nG(x ), which 

was implicitely assumed to be approximately unity in the derivation lead- 
[ t l  t 

ing to eq. (3 .  8 ) .  It can be seen that this approximation can be somewhat 

violated without significantly affecting the resul ts .  We will improve 

upon this resul t  later.  

At this point, the question that mus t  be resolved is how do we 

and cr ? Barr ice l l i  proposed the follow- 
0' ?' es t imate  the parameters  u 

ing method when he was using E V T  to study climatic variations. 3.3 

If we average that density over the fade, we obtain - 
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But this can be writ ten as 

a l U 1  t a l u l  - e 
.L H(x) = a e -I- f U  (u,)  9 

1 1 (3.12)  

1" t h a t  is, a convolution between a double exponential and the density of u 

z - ez F r o m  Section 1.3,  we know the mean of the density f ( z )  = e 
2 

IT is y, while its variance i s  - . 
sity which is obtained by convolving two other densit ies is just  the sum 

Since the mean and variance of a den- 6 

of the individual means and sum of the individual variances of the two 

convolved densities , we have 

2 L 

v a r  (x) = 

(3. 13) 

(3.14) 

Therefore ,  if we again replace the population mean and population 

var iance by the corresponding sample values,  again computed f rom the N 

minima of n samples  , we obtain 

A - - -  ' 
0 > X - t u  min A 

a1 
-I 

and 
L 

A 2  t u  TT var  (x ) = - m in 

(3. 15) 

(3.16) 

Since we now have three  unknowns and two equations, we need one more  

equation. This equation can be obtained by measuring the fade separately.  

That i s ,  since the variance of u 

not have to compute 2' f r o m  extereme-values. 

is the same as  the variance of A, we do 

Rather,  we can compute 

1 

the mean of each se t  of n samples,znd then compute the variance of those 

means.  

constant over n bits),this will be a reasonable es t imate  of u . 
Since we a r e  assuming slow fading. (fading which is approximately 

2 
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Finally, we have to determine how we a r e  going to choose n and 

x 

approximation leading to eq. ( 3 .  8). However, in order  to estimate the 

initial density parameters  (that is ,  the parameters  of the density before 

We had some idea of the region where eq. ( 3 . 4 )  is valid by using the t' 

it is averaged over the fade), n must  be in the vicinity of 1 / F ( x  ) . 
we average over the fade, our final probability of e r r o r  G(x ) will be 

considerably l a rge r  than F(xt), and therefore we know that the assump- 

tion nG(x )el will always be violated. 

detection procedure will be as follows: pick an average false  dismissal  

probability G(xt), pick a value of n reasonably l a rge r  than l /G(xt)  (say 

by a factor of loo) ,  and compute xt from eq. (3. 7): 

Once t 

t 

Keeping this in mind, the actual t 

2 a u  
x = u  - 1 - 1 In [nG(xt) ] . 

2 al t 0 

n 
and then calculate the total probability Pfa 9 

At this value of x t ,  compute 

of e r r o r :  

which is valid for  equal apr ior i  probabilities. 

Having done this, we will now pick another G(x ) and repeat the 

s and 

t 

ent i re  procedure. 

f inally select  that x which corresponds to the smal les t  value of the es t i -  

mate  of the minimum probability of e r ro r ,  P(E). 

We will continue this over a wide range of x 

t 

t 

A 

It must  be pointed out, however, that the accuracy of the value of 

x dec reases  as the variance of the fade increases .  

method is valid For signals which ~n1.r- fade 3ver a s,mall range of ~ a l i x s ,  

That is why this t 
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3. 2 Adaptive Detection 

3.  2, 1 Adaptive EVT Detector 

In o rde r  to design an adaptive detector using EVT,  we must  find 

a way to t r ack  the fade by means of changing u 

parameter  that is changing with time. 

since that is the only 1' 

(Recall  that the density of the 

signal-plus-noise is assumed to be undistorted by the fade, thus keeping 

al constant, and u and a 
P n 

a r e  constant since the noise does not fade). 

The first change that must  be made is in the learning period. We 

will  assume,  as in the previous section, that the fade is constant over n 

b i t s ,  and that we want Nn total bits in  the learning period, However, 

1 whereas  previously we were able to use N minimum values to estimate u 

and a l ,  we can not do that now because the N minima all come f rom dif- 

f e ren t  distributions. 

We can, however, t ransform all the minima f rom different densit ies 

into new 11 minima" f rom the same distribution. 

To see  this,  consider the following: the only differences in the den- 

s i t ies  f r o m  which the minima originally come a re  their  mean values,  due 

of course ,  to the assumption of the fade not causing any distortion in the 

densit ies.  Now let us examine two densities which differ by only a shift. 

Consider fx(x) and f (y) = fx(x - A), If cp (x) and cp (x) a re  the den- 
Y x1 Y1 

s i t ies  of the respective minimum values, we have 

(x) = n [l - Fx(x)] (n- l )  fx(x) 9 9 X. 
1 

and 

(3.17) 

n [I - F ~ ( X  - A)] ( n - l )  f x ( x - A )  = cp ( x - A )  , (3.18) 
x1 

In other  words,  if two densities differ only by a shift, the densit ies of 
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their  minima differ by that same shift, 

Therefore ,  i f  we have N minima f rom N densities having means 

A1 , AZ, . . . AN, and we want to compute Gumbel’ s parameters  which 

correspond to, say,  the N density, we can do so  by taking the N-1 r e -  th 

maining minima and adding to them the difference between A 

mean corresponding to the minimum we a r e  changing. 

and the N 

F o r  example, 

i f  the ith minimum has a mean equal to A the quantity x’ = x. t (AN -ALi) 
il l1 i’ 

will be distributed in the same way as the minimum value corresponding to 

the Nth density, namely x . 
N1 

W e  a r e  now in a position to discuss the detection procedure.  The 

parameters  corresponding to the last (most  recent)  value of the fade will 

be calculated using the adjusted minimum values as discussed above. 

will then use a slightly modified version of the usual method for estimating 

u and al. 1 

use,  will a lso apply when u Previously, we were  

very carefu l  about the value of n we used. Now, because the e r r o r  prob- 

abilities will constantly change, we wil l  arbi t rar i ly  pick a value of n such 

1 that - is somewhere in the vicinity of the e r r o r  probabilities we expect. n 
Also, with respec t  to modifying the minimum values, since we do not 

W e  

This modification, which only involves the value of n that we 

and an are estimated. n 

know the actual values of the N means A1. . . AN, we will use the sample 

means of each s e t  of n bits to estimate the t rue  means. 

A h h  A Having the four parameters  u 1, ul, u , and an, we will use eq. (1. 14) n 

to es t imate  the threshold, and then use this threshold until we have de-  

tected n bits as signal. Of these n bits, some will be wrong, but for low 

probability of e r r o r ,  not many. We wi l l  then compute the mean of the 

new samples ,  use this as the new reference mean, and t ransform the 

or iginal  N minima of the learning period in precisely the same  way as 
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a n e w  ( 
A was done in the learning period. 

value for  a is not necessary) ,  we will obtain a new threshold with which 

to detect until n more  bits a r e  decided as containing signal. This process  

will then be continually repeated. 

Having a new value for u 

h 
1 

There  is one point that should be noted, however, and that is that we 

have changed one of our original assumptions. 

assumed the fade was constant over n consecutive bits, now we  a r e  a s -  

suming the fade is constant over n bits which a r e  detected as signal. 

This period will be longer than the original period, because for  equal 

apr ior i  probabilities of transmission, signal bits will only be transmitted 

half the time. 

over approximately 2n consecutive bits. 

Whereas we originally 

Therefore ,  we are  now assuming the fade remains constant 

3 .  2. 2 Confidence Intervals 

Finding confidence intervals in the fading case is more  difficult 

than in the case of a constant signal, but nevertheless,  theoretical  resu l t s  

can be obtained. It was previously shown, in the non-fading case ,  that 

all the est imates  were asymptotically normal.  It will now be shown that 

this resu l t  is valid in the fading case,  except that these asymptotic r e -  

sults have to be averaged over another asymptotically normal density. 

To  show this, consider again the way the N minimum samples a r e  being 

th a l tered.  The j minimum sample,  x. will become z , where 
j J min ’ 

th and where the two summations a r e  the est imates  of the means of the j 

fading amplitude of the learning period, and of the reference fading a m -  

plitude r e s pe c tiv ely . 
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There a r e  two situations to consider. The first is the case  when 

N = R, which is the learning period; the second is when N > R ,  where 

the detector is in the process  of adapting its threshold. 

In the first case ,  it will be noticed that the two summations can-  

ce l  for  j = N = R. This is because the last minimum is a perfect r e fe r -  

ence in the learning period without any adjustment of its mean. On the 

other hand, for  all j < N - 1, the t e r m  - 1 n 

It is also correlated to zN, since z = x 

samples  composing the sum c xiR (recall  R = N). Therefore ,  if we assume 

that 

adjusted minima will all be independent. 

buted, as can be seen  by recalling that the signal-plus-noise density was 

assumed not to become distorted as  the signal faded. 

difference between any of the x1 s is their  mean , 

formed specifically to adjust fo r  this difference in means,  so that the z 1  s 

end up all having the same distribution. This,  of course,  assumes that 

E[C xiR] = AR, which will not be the case  i f  there  a re  e r r o r s  present.  

However, as  mentioned above, for low e r r o r  ra tes ,  very few bits will 

be in  e r r o r ,  and they will be ignored. If grea te r  accuracy is desired,  

the methods of Chapter 4 can be used. 

xiR acts  as  a constant. - 
1 

is the minimum of the N Nmin 

xiR = const, and neglect the last minimum z the remaining N-1  N’ 

They a r e  also identically d is t r i -  

Therefore,  the only 

But the z 1  s were  

Because of this simplification, when we compute the confidence 

intervals  fo r  the learning period, we will make our proofs significantly 

eas i e r  if we only use the first N - 1 minima, and disregard the las t  one. 

This is not necessary when the detector is out of the learning 
n C xiR acts as a constant f o r  1 

period, because, with R >  N, the sum - n 

all N adjusted minima, and all N z . l s  have the same density, 
1 

J 
Therefore ,  in the derivation that follows, N minima will be used, 
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but it should be changed to N - 1 if the resu l t s  a r e  used for  the learning 

period. 

Because the variables z, a r e  independent and identically d is t r i -  
1 

buted, given that fL x = const, we a r e  able to use the previous r e -  
n iR 

1 
sults given in Chapter 1, and then average over the distribution of 

1 2 x , which will be asymptotically normal. However, to use our n i = l  iR 
previous resul ts ,  we need the first four central  moments of the z s. 

j n  - ;; 1 E X i j .  
To this end, consider the non-constant par t  of z x 

1 
j’ j m i n  

This is a sum of dependent random variables,  since the las t  n t e r m s  a r e  

all correlated with xj min. 

ances equal to n.  and u respectively, then 

E we assume the x . . ~  s have means and va r i -  
1J 

J j 
n 

iR ’ 
~ [ z  I - 1 2 xiR = const]  = u - -  Y - n 

j n l  I-j alj 1 

and 

As is usually the case  in calculating confidence intervals,  we need 

the actual values of the unknown parameters ,  namely the n ’ s, u s, 

etc. 
j j 

In fact, we will see  below that we need the actual densities. 

In o r d e r  to calculate the covariances, we need 

cov (x j min’ xij) = E(xjmin, x..)-E(xj 1J ) E (Xij)* 

Since x . .  i s  any sample f r o m  the n samples f rom which x. 

minimum, we can calculate the cov (x 

is the 1J J min 

, x.,) as follows: 
j m i n  IJ 

Let y l j . .  .ynj  be the ordered set  of xij, with y1 the smallest  
j 

a n d y  the largest .  Then 
nj 

n I x ’ .  = Ykj] Pr [ x. .  1J = Ykj] cov (xjmin,Aij-)=~ k =  1 cov [ x jmin”kj IJ 

1 
1J n However, the probability that x.. is the kth o rde r  statistic is - . 

. 
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Therefore,  
n 

The covariances in the above Sum can be calculated, at l eas t  in  

theory, by considering the joint density of the kth order  statist ic with the 

first order  statistic. 

statistics is given by 

In general, the density of the ith and jth o rde r  

( 3  *%) 

f(x., x.)  = n! F(xi) i -1  [F(xj)-  F(xi)] j - i -1  F(x j )  n- j  f(xi)f(x.) ,  
J (i-l)! ( j - i - l ) !  (n-j)! J 

- a <  x. < x. < a .  
1 -  J 

for 

We can s imilar ly  calculate the third and forth central  moments, 

That is, since and therefore use all the resplts arrived at previously. 

the confidence intervals for functions of the sample mean and sample 

variance of independent identically distributed random variables only 

depend upon the first four central  moments of the distribution, which we 

can (in principle) calculate, we can (in principle), calculate the desired 

confidence intervals.  

Finally, we must  remember that  all these resul ts  a r e  conditioned 

1 on - n 
xiR = const, and therefore  our  answer has  to be averaged over 

its distribution, which, as pointed out above, is asymptotically normal. 

3 .  2. 3 Computer Simulated Resu l t s  

In o rde r  to obtain some numerical verification for this method, 

two computer simulations were run. The system simulated was an on- 

off sys t em with a matched fi l ter  and an envelope detector, 

wcrs a c a r r i e r  whose ampiitude was fading, and the noise was gaussian. 

Therefore ,  at the output of the system, the density of the noise was 

Rayleigh (u = l) ,  while the density of signal-plus-noise was Rician (a = 1) 

The signal 

__. - 
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with t ime varying parameter  A(t) .  

The mean value of the fade in the first simulation was 5, and the 

mean value was 6 in the second simulation. In both cases ,  n = 50 and 

N = 20. 

Note that this is not the case  we analyzed, since we assumed the 

signal-plus - w i s e  density remains undistorted as the signal fades ,  and 

this is not t rue  of a Rician density. 

will nevertheless perform well, indicating, as has  been the case in pre-  

vious examples,  that  the assumptions a r e  not cri t ical .  

W e  will see  hQwever, that the sys tem 

The slow fade was simulated by a waveform which was constant 

over n signal decisions, and then the next fade was correlated to the ten 

previous values of the fade using a correlation coefficient of approximately 

90% between any two adjacent fading levels. 

The resu l t s  of the first simulation a r e  shown in Figs.  (3. 1)  and 

Figure  (3 .  1) i l lustrates how this syetem tracks the fade, and corn- ( 3 .  2).  

pares  this resu l t  with an  i l lustration of how the optimum system would t rack  

the fade. It can be seen  that even though the fade becomes quite deep, 

the sys tem still per forms well, and sti l l  recovers  when the amplitude 

incre  as  e s ~ 

Figure ( 3 . 2 )  compares the number of e r r o r s  this system makes 

with the number of e r r o r s  the optimum sys tem would make. 

f igures ,  it should be noted that the optimum (or  paramet r ic )  sys tem e m -  

ployed h e r e  is one that knows both the exact values of the reference fade 

plus the actual densit ies of noise and signal-plus-noise. 

Fig.  (3. 2), each horizontal line between two adjacent abscissa  values 

is the number of e r r o r s  made between threshold changes. 

In both 

In reading 

Also, in  both f igures ,  the f i rs t  absc issa  point corresponds to the 
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learning period, so that point ( 2 )  on the horizontal scale  corresponds to 

the first threshold adjustment. 

F igures  ( 3 . 3 )  and (3.4) a r e  the corresponding resul ts  of the 

second simulation. There  is, however, one point to note regarding 

Fig.  ( 3 . 3 ) .  

deep fades,  in Fig,  ( 3 .  3 )  we have the worst  resul ts  when the amplitude 

was la rge  (that is, when the signal did not fade deeply). 

is that when the mean of the fading amplitude was changed f rom 5 to 6, 

no corresponding change was made in the value of n. 

when the signal had a la rge  amplitude in the second simulation, the value 

of n = 50 was too sma l l  to give an accurate approximation to the density 

functions at the threshold. 

Whereas in  Fig.  ( 3 .  1)  we obtained the worst  resul ts  fo r  

The explanation 

In other words,  
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CHAPTER 4. - DECISION-DIRECTED MEASUREMENTS4' 

4. 1 Elimination of Learning Period 

In all of the previous examples, the key factor which enabled us to 

detect  signals, in  noise having an unknown probability density, was the 

learning period, during which t ime the appropriate density functions 

were estimated. Because of the t ime consumed by the learning period, 

it is worthwhile to consider a scheme which does not require  such a 

learning period. 

In this new scheme, it will be necessary for the detector to es t i -  

mate  Gumbell s parameters  (after an appropriate t ime delay) on the basis 

of its own decisions, some  of which will be wrong. That is, we will 

consider a detector which makes its estimates of the parameters  without 

the benefit of knowing that those bits which were  detected as  noise a re ,  

i n  fact ,  noise, and that those bits detected as signal-plus-noise do, in fact ,  

contain signal. 

The first thing we must do i s  to specify an initial threshold with 

which to  begin detecting. We have to be careful he re ,  because the estimates 

we make of Gumbell s parameters  will be obtained f rom the samples we 

detect with this initial threshold. That is, no matter  what threshold we 

pick (including the optimum threshold) we will make a number of incorrect  

decisions, and these incorrect  decisions will affect our estimates.  Ob- 

viously then, if we initially pick a very bad threshold, we will get worse 

estimates then if the threshold was better. 

Since we a r e  starting with no more  information than that the deii- 

s i t ies  considered have exponential-type ta i ls ,  we certainly cannot expect 

to  initially a r r ive  at any optimum threshold. However, we can come up 

with a reasonable threshold by taking, say s samples,  where s will be more 
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than ZnN, and computing the mean of those s samples.  That this is a 

reasonable value to pick as a threshold can be seen as follows: Since 

we a r e  dealing with large SNR, the optimum threshold will be somewhere 

out on the tails  of both distributions. 

of the means of the two densit ies,  this will also lie on the tails of both 

distributions. It can be 

seen  that the two thresholds a r e  reasonably close,  and that start ing with 

almost no knowledge whatsoever,  the average of the population means 

makes a good initial threshold. 

Likewise, i f  we take the average 

A specific example is shown in Figure (4. 1).  

= 3.41 
(x  t lop t i m u m u; A 2  = 3.625 

A 2 =  1.25 3-41 1 A 1 = 6  
3.625 

Sample Mean a s  Threshold Est imate  

Figure (4.1) 

The densities in Fig. (4.1) a r e  Rayleigh with parameter  Q = 1, and 

Rician with parameters  u = 1 and A = 6. 

The re i s  st i l lone more  problem. If we agree to use the average 

of the two means, the best  way to estimate it would be by the average of 

the sample means. However, since in  our initial s samples ,  we do not 

know how many of them came f rom each density, we cannot estimate the 

individual sample means.  

What we can do, though, is compute the overall  mean of the s 

samples .  

dual means i f  the apr ior i  probabilities of t ransmission a r e  equal. 

This will be a reasonable estimate of the average of the indivi- 
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Having decided then on an initial threshold, the next s tep  will be 

to go back and detect the s samples we have accumulated. 

plished by calling all samples  below the threshold, noise, and all those 

This is accom- 

above the threshold, signal (plus noise). 

It can now be seen  how large s must be. Since we need nN samples  

to estimate u and a and the same number to es t imate  u and an, we 

must ,  once we start detecting the s samples,  make at  least  nN noise 
1 1' n 

decisions,  and nN signal decisions. 

bilities, s will be approximately 2nN, but, except in an unusual case,  will 

Because of the equal apr ior i  proba- 

have to be la rger .  

Note that we have not yet decided how we a r e  going to pick n. 

That the value of n we choose can be cri t ical  can be seen as follows: Con- 

s ider  our  method for  estimating the parameters .  

mean  and sample standard deviation of the maximum or  minimum values. 

It is based on the sample 

But once we determine, say,  the maximum of n samples  f rom samples 

which were  below some threshold, we a r e  automatically bounding the 

value that  the maximum sample can take. 

chosen corresponds to a value of un which is grea te r  than the threshold. 

This means that the estimate we make of u will have to be wrong. 

is, s ince the N maxima we a r e  using a r e  all l e s s  than the threshold, 

their  average is certainly less  than the threshold. Therefore ,  since the 

Suppose now, that the value of n 

That n 

es t imate  of u 

a positive constant (i. e . ,  minus a positive number) ,  u 

be i e s s  than the threshold; 

is this average minus the sample standard deviation t imes 
n 

h will necessar i ly  n 

Now assume we choose an n which corresponds to a u 

the threshold,  but 11near" it. Since u is near  the threshold, at  least  

some of the maximum values we would obtain i f  there  were no threshold 

less  than n 

n 
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will In other words,  we will 

probably be usingvalues we believe to be maxima f r o m  se ts  of n noise 

samples which a r e  either not f r o m  the noise distribution (they would then 

be samples  of the signal-plus -noise distribution which fell below the threshold 

and consequently were  detected as noise), o r  f rom the noise distribution, 

but not the la rges t  of n consecutive noise samples.  The latter situation 

would a r i s e  if  ei ther some signal-plus-noise samples  were  among the n 

probably be grea te r  than the threshold. 

samples  believed to be noise, o r  i f  a noise sample l a rge r  than the thresh-  

old was actually t ransmit ted during the period when the n samples were 

collected. 

The net  affect of this,  with respect to the resulting parameter  

A es t imates ,  is a value of u which is approximately equal to the threshold, 

and a value of k much l a rge r  than the t rue  value an. This can easily be n 

seen  by the following reasoning: Since most  or  all the N maxima will be 

near  the threshold, the sample mean of those maxima will be near  the 

threshold.  Also, fo r  the same reason, the sample standard deviation of 

the maxima will be much smal le r  than it should be. 

will be approximately equal to the sample mean, and an, being inversely 

proportional to the sample standard deviation, will be much too large.  

Therefore ,  to ensure that most of the maximum values we use 

n 

A 
Consequently, u n 
A 

a r e  co r rec t ,  we pick n so that the corresponding un is  quite a bit lower 

than the threshold. 

procedure,  since we have no idea how to choose n initially. 

This ,  of course,  will probably take a t r ia l -and-er ror  

Since ail of the above reasoning applies to the minimum values of 
A 

the signal-plus-noise density, the value of u 

than the threshold. 

should be reasonably l a rge r  
1 

At this point, we have just  about caught up to ourselves.  Having 
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detected 2nN of the original s samples ,  and having estimated Gumbel 's  

parameters ,  we can compute a new threshold, use that threshold to 

detect  the remaining s - 2nN samples ,  and then start detecting new 

samples.  

either n signal decisions o r  n noise decisions, recalculate the appropriate 

parameters ,  and again change our threshold accordingly. 

As we a r e  detecting incoming bits,  we will stop after making 

4. 2 Confidence Intervals and Computer Simulated Results 

In o rde r  to obtain confidence intervals, we need the distribution 

of the maximum and minimum of sets  of n var iables  which a re  no longer 

all signal-plus-noise samples ,  o r  all pure noise samples.  The n bits 

now contains samples  f r o m  both distributions, and to find the density 

functions of the extreme-values f rom the combined se t ,  we proceed as 

follows : 

Let z be an a rb i t r a ry  sample. Lf w,e have n z 1  s which we have 

detected to be noise, then, by definition, all the z' s will be below the 

threshold xt. 

Therefore ,  to find the distribution of z ,  we wri te  

But, 

P r [ z p x ,  z < x  ] Pr [ z  - < min (x , xt) ] 
- t  - - 

Pr z < x  Pr (z  - < xt ) 
Pr z (  x z L x t  = 

[ - t l  
[ - I  1 

Pr z < min (x, x I] = Pr z 6 min (x, x ) I  z = signal Pr z = signal] 

min (x, x ) I  z = noise Pr z = no i se ]  

[ -  t [ -  r t  I [  
[ t I [  t Pr z 

t x > x  
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t Pr (z 5 x t I  z = noise) Pr (z  = noise) 

Therefore ,  

I 1 

x z x  t 

t x > x  

The distribution of zn,the maximum of n z 1  s ,  is given by 

t 1 x > x  

In o r d e r  to obtain a resu l t  i n  a more useful form,  we substitute the 

exponential approximations we have been using for  Fn(x) and Fstn(x) 

into the above equation. That is ,  

1 1 

t . (4.2) X L X  

t x > x  

However, we know that 

4.2 
l im [ I t  $1" = e Y , 

n-a, 

Therefore ,  for  la rge  n, we have 

-an(x-un)  a p  - u l q  

1( t 1'1 

e - e  

x < x  + a  x - u  - t (4.3) -a x -u n( t n) - e  

F ,(x) = 
zn 

e 

t 1 x > x  
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Also, 

where u(y) is the unit s tep function. 

If we now consider those samples which have been detected as 

signal, we must find the density of the minimum of n z1 s which a r e  all 

g rea te r  than the threshold. Its cumulative distribution i s  then given by 

Pr[z \<: - x, z ?  xt]  Pr[xt ,< - -  z < x ]  - P r z < x z > . x  = - 
P r z > x  [ -  t l  

Pr z > x  [ -  1 - t ]  
[ - t l  

Proceeding as before, we have 

t Pr xt < z 5 x 1 ~  = noise Pr z = noise] 
f [ -  I [  

L Also, 

P r [ Z z x t ] =  P r [ l . z x t l z = s i g n a l  P r  z =  signal]+ ~ r F ? x ~ I z = n o i s e  P r z = n o i s e ]  I [  I C  

Therefore,  we have r 

t 0 x < x  
and 

2 - F,(X) - F 

2 - F  ( x ) -  

(x) s t n  
t . (4. 6)  x > x  - 

s tn(x t )  n t  

I '  t x < x  
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If we now substitute for Fn(x) and F 

we obtain 

(x) the exponential approximations, s t n  

Finally, the 

Fa ( x ) =  1 
1 

dis 

-1 
1 tribution of z 

-Pr  z i x  x >  [ I  

-a ,(x-un) a l  (x-ul  ) 
e - -  e l t z  n 

-an( Xt -Un) e a l ( x t - u l ~  / - -  e I 1  + -  
n 

1 

t X L X  

x Xt 

, the minimum of n z 1  s ,  is given by 

-an(x-un) a l (x-u l )  
- e  

e 

, the minimum of n z 1  s ,  is given by 

r 
-an(x-un) a l (x-u l )  

- e  

x -u 
e 

[ e -an( t 
e 

I 0 

and the density of z1 is 

If we have N se t s  of n z' s detected at  a given threshold as noise, 

and another N se t s  of n z t  s detected at that threshold as signal (plus noise), 

we can  use  all the previous resul ts  of Chapter 1 for  calculating confidence 

intervals ,  and in determining the values towards which the est imates  

converge, since we again have functions of identically distributed random 

variables .  

cen t ra l  moments. 

appropriate integrals ,  the moments must either be calculated numerically 

on a computer,  o r  some approximations made for the integrals so that 

cloSec! fcrlrr resul ts  can be obtained. 

The only information needed a r e  the values of the first four 

However, because of the difficulty in evaluating the 

Tables (7)  and (8) summarize the resu l t s  of two computer simula- 

tions. Table (7)  was run  with a Rician density (A = 6.5, IT = 1) for signal 

and a Rayleigh density (a = 1)  for noise, and Table (8) was run  with the 
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same noise density, but the Rician density had its parameter  

f r o m  A = 6.5 to A = 7. 0. Both simulations were  made with N = 20. 

The threshold for Table (7 )  was x = 3.86, and the threshold for Table (8 )  

was x = 4. 1. The column labeled optimum value" contains the theoret--  t 
ical  values corresponding to the extremes of n samples  taken with a 

learning period (i. e . ,  no incorrect  decisions). The column labeled 

It asymptotic value" gives the values which resulted f rom the above analysis 

(that is, resul ts  obtained f rom eqs. (4.4) and (4.9) ), and finally, the las t  

column gives the numerical  resul ts  f rom the actual computer simulation. 

A" changed 

t 

Table (7 )  

P a r a m e t e r  

U 
1 

a1 
U n 

n 

t 

a 

X 

P a r a m e t e r  

u1 

a1 
U n 

an 

t - x  

Optimum Value Asymptotic Valve 

4.54  4. 58 

2.44 5. 72  

2. 8 2. 86  

2. 8 3.06 

3 .64  I 3.91 

Table (8) 

Optimum V a h e  Asymptotic V a h  e 

5.  04 5. 07 

2.48 3. 64 

2. 8 2. 84 

2. 8 2. 86 

3. 88 4. 05 

Simulation Result 

4. 69 

3.77 

3.0 

3. 23 

3,  89 

Simulation Result 

5. 18 

3. 09 

3.02 

2. 77 

4. 14 

It should be noted that the results of Chapter 1 only apply to functions 

of identically distributed random variables. Thus, the above resul ts  a r e  

only valid when all of the samples are  detected using a single threshold. 
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However, i f  we recal l  the detection procedure, after the initial t ime 

delay (when all samples  a r e  detected at the same threshold),  the new 

samples a r e  detected at  a different threshold each t ime either n signal 

decisions o r  n noise decisions a r e  made. 

samples ,  detected as either signal o r  noise, there  will probabily be more  

than one threshold used, because while we a r e  in the process  of making, 

say  n signal samples,  we a r e  a lso collecting I < n noise samples .  After 

the nth signal decision is made, we change the threshold, and then con- 

tinue detecting. 

decisions,  we will have used at least  two thresholds,  since the first I 

noise decisions were  made with one threshold, and then that threshold was 

adjusted at least  once before the remaining n - I noise decisions were 

made. 

Also, in any given se t  of n 

It is obvious then, that by the t ime we make n noise 

The s implest  solution (although most  costly in t e r m s  of time and 

effort) is to redetect  all the previous samples each t ime the threshold is 

changed. 

n new signal decisions o r  n new noise decisions, we can use that threshold 

to redetect  all the previous samples  for  which decisions were already made. 

If this procedure is used, then eqs. (4 .4 )  and (4 .9 )  would always be ap- 

plicable, and therefore  all the results of Chapter 1 would be appropriate. 

In other words,  instead of only using a given threshold to make 

If the cost  of storing and redetecting the old samples  is prohibi- 

tive, the above analysis can be thought of as an upper-bound to the accuracy 

of the est imates .  

4.. Lit-€ sense. 

proves,  fewer e r r o r s  should be made, and therefore ,  the parameters  

should become c loser  to what they would be if  we had a learning period. 

The t e r m  "upper  boundt1 is used he re  only in an intui- 

The justification fo r  it is that as  the threshold estimate im-  

If neither of the above two approaches is satisfactory,  confidence 
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intervals can be obtained using the nonidentical random variables.  We 

will, however, make the following approximation: If we a r e  taking the 

maximum (or minimum) sample f rom n independent samples ,  we will 

assume they were  all detected with the same threshold. 

above, this will almost always not be the case ,  but for equal apr ior i  

probabilities of t ransmission,  it will be very  nearly t rue  for  large n, 

since for  each n signal bits that a r e  transmitted,  approximately the same 

number of noise bits will be transmitted. Also note that this assumption, 

even though violated, is not very  critical, because the change in adjacent 

threshold values should not be very great ( see  Fig .  (4. 2) ). 

the only difference in n adjacent signal decisions or  noise decisions is 

that not all of them have been detected with the same threshold. 

since it is highly unlikely (for low error ra tes  and equal apr ior i  t rans-  

miss ion  probabilities) that more  than two thresholds would have been used, 

and s ince the difference in the two thresholds is small ,  the random va r i -  

ables result ing f rom decisions using these thresholds will be almost identi- 

c ally distributed. 

As mentioned 

In other words,  

However, 

Finally, it should be realized that this approximation is not theoret-  

ically necessary,  but is made so  that we can use the analysis leading to 

eqs. (4.4) and (4.9) (that is, so that we can approximate the density func- 

tions by their  asymptotes and thereby obtain a simple expression for the 

densi t ies  of the extremes) .  

distributed, we cannot obtain a simple exponential asymptote for their  

densi t ies ,  but we can still wri te  down the exact d i s t r i tu t im of the extremes 

(assuming specific fo rms  for  the initial density as has usually, been the case 

when confidence intervals were required). 

If the random variables a r e  not identically 

F o r  example, i f  we have made 

i < n noise decisions at one threshold, and n - i noise decisions at another 

threshold,  the distribution of the maximum of the se t  is 
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i 
F m ax (X)  = F1 (x) F;-i(x) , 

where F (x) is the distribution corresponding to the first threshold, and 

F (x) is the distribution corresponding to the second threshold. 

1 

2 

Proceeding now with the above assumption, the extreme f rom any 

s e t  of n random variables all detected at the same threshold has a density 

which is given by either eq. (4.4) or  eq. (4. 9).  

If we take N maxima and N minima, where each one came f rom 

a group of n samples  detected with a different threshold,  and compute the 

four  Gumbel parameters ,  es t imates  of the probability of e r r o r ,  and the 

threshold, we have functions of sample moments of nonidentically d i s t r i -  

buted random variables.  

To  prove that all the estimates a r e  normal  random variables,  

we start with a theorem given by R. de MisBs. 4 * 3  A sum of independent 

nonident ic ally distributed random v ar iable s is asymptotic ally normally 

distributed if the following conditions a re  satisfied: 

Le t  x., i = 1. . . n, be any random variable with mean t . ~  and var i -  
1 i 

ance cri . Then the quantity 

2 t E  ci = S I X i  - Pil f(xi) dxi 
- 2  n 

2 
mus t  be bounded fo r  some E > 0, and n 2+E u must  go to infinity 

i =  1 
as n goes to infinity. 

n 2  n 
Using this theorem,i t  can easily be shown that x. and x. 

1 1 i =  1 i =  1 
a r e  asymptotically normal,  where the x. a r e  distributed according to 

e i ther  eq. (4.4) o r  eq. (4.9). This car, be seen by noting that these 

1 

densi t ies  a r e  bounded on one side and go to ze ro  as a double exponential 

on the other side,  so  that all moments will exis t  of both x. and xi . 2 
1 

In Appendix B, we use the above resu l t  to prove that the sample 

var iance  is also asymptotically normal. This will enable us to extend 
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Crame/rt s theorem on functions of identically distributed random variables  

to our present case,  and therefore we wil l  have the resul t  that all our 

es t imates  a re  asymptotically normal. 

Finally, a computer simulation was run to supply experimental  

verification fo r  the theory. 

changed by small amounts with each adaptation,so the approximation that 

that n consecutive decisions were made with only one threshold was 

r e  asonable. 

The simulation showed that the threshold 

Figure (4.,2) shows the resul t  of the computer simulation of the 

The signal density was a Rician with parameters  A = 6 .  5 a d  system. 

u = 1, and the noise came f r o m  a Rayleigh density with parameter  u = 1. 

During the t ime delay, 2500 samples  were collected,and the overall  Sam- 

ple mean was used as the first threshold. 

tected at that threshold until there  were 1000 signal decisions and 1000 

noise decisions. In each group of 1000 samples ,  N was se t  equal to 20, 

and therefore  n = 50. 

and this led to the first threshold adjustment. 

was continually changed each t ime either 50 signal decisions or  50 noise 

decisions were  made. 

The samples  were then de-  

The four Gimbel parameters  were then calculated 

After that, the threshold 
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Summarv 

A nonparametric detector which can operate in any environment 

which has noise having exponential-type characterist ics has been studied. 

The detector was based upon extreme -value theory. 

In Chapter 1, a review of extreme-value theory was given, and it 

was shown how this theory was to be used to detect digital signals in addi- 

tive noise. 

at  JPL. This work differs f rom the i r ' s  in several  respects.  Only 

a single exponential is used to estimate the probability of e r r o r ,  instead 

of a double exponential. 

was to a r r ive  at an estimate for the optimum threshold of the system. 

In this last respect,  this work differs from other nonparametric detectors,  

since, to  the author 's  knowledge, most nonparametric detectors a r e  

radar-type detectors in that they choose the desired false a la rm rate  and 

accept whatever fa lse  dismissal  ra te  that results.  

EVT has previously been used in signaldetectionby engineers 

Also, one of the main objectives of this report  

In Chapter 2, specific examples were  given for detecting a con- 

stant signal in  additive noise, and a comparison was made between the 

EVT detector and the rank detector, . 

comparison a r e  that the EVT detector, in  certain situations, will perform 

as well as the optimum Neyman-Pearson parametr ic  detector,and there-  

fore  better than the rank o r  any other nonparametric detector, and that 

it will do so with significantly l e s s  effort than that required by other 

nonparametric detectors.  

The two significant resul ts  of that 

Chapter 3 considers two detectors which can be used when the 

The first detector uses a fixed threshold, and is not signal is fading. 

of much practical  use because it can only perform satisfactorily when the 

var iance of the fade is quite small. The second detector is an adaptive 
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detector, and, to the author' s knowledge, this method of using extreme- 

value theory with a t ime-varying parameter has not been considered 

before. 

detector, and the computer resul ts  were in agreement with the theoretical 

results.  

Computer simulated results were presented for the adaptive 

Finally, in Chapter 4, we eliminated the learning period that was 

essential  to the resul ts  of the first three chapters,  and resorted to deci- 

sion-directed measurements .  The asymptotic distributions of the es t i -  

mates  were  derived, and i t  was shown that satisfactory resul ts  could be 

obtained i f  the e r r o r  probabilities were low. 

resul ts  obtained by a computer simulation were  presented. 

As in Chapter 3 ,  numerical 

Among the problems which have not been solved and which seem 

to be worth investigating i s  that of choosing an optimum value of n in two 

situations. 

The f i r s t  case  is when the learning period i s  present,  but, regard-  

l e s s  of what e r r o r  probability is to be estimated, only nN = K samples 

can be taken. 

the best  way to divide them into N groups of n samples?  

That is, given K samples in a learning period, what is  

The second situation a r i ses  when the learning period is eliminated. 

Since picking n too smal l  resul ts  in  inaccurate theoretical estimates 

(because of the Taylor s e r i e s  only being accurate in a limited region 

about the ut s), and choosing n too large resul ts  in inaccurate statist ical  

es t imates  of the parameters ,  a compromise has to be made, However, 

for  any given e r r o r  probability, it is not 'mown how to make that com- 

promis  e. 
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Appendix A - Density Function for Minimum of n Independent Samples 

The following is the derivation leading up to equation (1. 8), and 

is essentially the same as Gumbell s derivation*' which resul ts  in 

equation (1. 7). 

Expanding F(x), the distribution of the initial var ia te ,  about 

x = u l ,  we have 

where 
1 
n 

1 Factoring = out of eq. (A. l ) ,  we obtain 

F ( u l )  = - . 

F(x) = 

If eq. (1. 2) is 

But 

al = n 

n k! n f  

now used at the point x = u l ,  we obtain 

so we can  wri te  nf' (u,) as follows: 

f b l )  
n f '  b) = n f ( u l )  FO- 

Differentiating both sides of eq. (1. 2), and evaluating at  X = u l ,  

we obtain 

o r ,  again using eq. (1. 2), 
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2 

f ( U l ) f ' ( U l )  (%,($) 3 
= n l = a l  

nf l ' (u  ) = n 
c 

n 1) 1 F ( u  

We will now assume that 

n f(k) (u,) = a1 k t l  
9 

and will show that this implies 

n f  (ktl) (u,) = al k t 2  

By mathematical  induction, it will then follow that the equation holds fo r  

all k. 

To show this, consider 

o r  

Again differentiating both sides of the equation, we obtain 

Using equation (A. 5)J  we have 

= ( k t 1  
1)  f(u 

(k t 1  

\n I 

k t l  nf (ktl) (u,)  = a l  

- - k t l  k t l  
('1 - kal  

k t l  
a1 

Therefore ,  we can rewri te  eq. (A. 2) as 
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a3 
F(x) = 1 n [I t a: 

1 

which is the asymptotic f o r m  we have used throughout this report .  

To complete this derivation, it simply must  be recalled that if 

q x )  is the cumulative distribution of the minimum of n samples ,  then 

a l (x  - u l )  

n 
e @,(x) = 1 -[1 - F(x)] = 1 - [l - 

and 
al(x - u1) 

lim ~ , ( x )  = 1 - e - e  9 

n-oo 

which is eq. (1. 8). 
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Appendix B - Asymptotic Normality f o r  Functions of Nonidentically 

Distributed Random Variables 

We will prove that i f  we have nonidentical random variables such 
2 1 2 

that Exi and Exi a r e  both asymptotically normal,  then f; C(xi  - K) is 

also asymptotically normal. 

given by Cram6rB* 

The proof i s  simply an extension of a proof 

f o r  identically distributed random variables. 

Let 
2 - 3 2  = - 1 Z ( X i  - x) , n 

A 2  u 2  = E(u ) , 

k =  1 , 2  1 k 
mk = - n Exi , 

% = E(mk) , 

= var  , 2 

"k 
U 

I and 
- ml - nl 

- "2 - n2 

z l  - U 

z 2  - U 

ml 

m2 

Then we have 

o r  

2 ( , ^ 2 - u  2 ) = u  ~ 2 - k 1  u m1 t n l )  - E  ( G ~ ) ]  = 

m 2 2  '1 t [ E ( G ~ )  - n;] = 

m2 

z2 - 2 n l u m l z 1  - 1 
U 

m2 

2 t c r  2 
"1 z 2  - 2 n p m  z l  -' ml "1 U 

m2 1 

WehaveE[1u2  z I 1 ] =  u 2 E(e l  2 ) = Consider the t e r m  u z 1  . ml ml ml 
Q 

totically normal  with zero mean and variance equal to  unity. 

t imes a number independent of n, since z l ,  by definition, is asymp- 
"1 

Also, 
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2 1 B. 2 
U = var (x) = 0 ( --). Therefore, by Tekebycheff's inequality , 

2 
m1 
m1 2 z1 converges in  probability to zero. U 

2 Therefore,  G 2  - u is a linear function of two asymptotically 

B. 3 normal  random variables,  and is therefore itself asymptotically normal. 

A 2  2 Having established the asymptotic normality of (r - cr , we can 

now, step by step,  u ~ e  the proof of Crarngrs theorem refer red  to in 

Chapter 1 ( see  eqs. (1. 29) and (1.30))and therefore  conclude that the 

functions of the nonidentically distributed random variables given in 

Chapter 4 a r e  also asymptotically normal. 
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